
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, VOL. 13,797-804 (199 1) 

NUMERICAL METHOD FOR UNSTEADY COMPRESSIBLE 
BOUNDARY LAYERS DRIVEN BY COMPRESSION OR 

EXPANSION WAVE 

JAE-SO0 KIM 
Korea Aerospace Research Institure, PO Box 15, Daeduk Science Town, Daejeon, 305606. Korea 

AND 

KEUN-SHIK CHANG 
Department of Aeronautical Engineering, KAIST, PO Box 150, Cheongyang, Seoul, Korea 

SUMMARY 

A numerical analysis is presented for the unsteady compressible laminar boundary layer driven by a 
compression or expansioq wave. Approximate or series expansion methods have been used for the problems 
because of the characteristics of the governing equations, such as non-linearity, coupling with the thermal 
boundary layer equation and initial conditions. Here a transformation of the governing equations and the 
numerical linearization technique are introduced to deal with the difficulties. First, the governing equations 
are transformed for the initial conditions by Howarth and semisimilarity variables. These transformations 
reduce the number of independent variables from three to two and the governing equations from partial to 
ordinary differential equations at the initial point. Next, the numerical linearization technique is introduced 
for the non-linearity and the coupling with the thermal boundary layer equation. Because the non-linear 
terms are linearized without sacrifice of numerical accuracy, the solutions can be obtained without 
numerical iterations. Therefore the exact numerical solution, not approximate or series expansion, can be 
obtained. Compared with the approximate or series expansion method, this method is much improved. 
Results are compared with the series expansion solutions. 
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INTRODUCTION 

Numerical solutions are obtained for the unsteady compressible laminar boundary layer driven 
by a centred expansion or compression wave. The expansion wave type of flow occurs in the 
driver section of a conventional shock tube after the diaphragm brusts. A similar expansion wave 
flow appears in the reservoir tube of a Ludvig- or tube-type wind tunnel. The compression wave 
type of flow might be generated by an accelerated piston such as in isentropic compression tubes. 

Inviscid expansion or compression wave flow has been solved by many investigators for one- 
dimensional unsteady isentropic flow in a shock tube. For example, Huter et al.' presented 
analytical solutions for velocity, pressure and temperature. 

Several methods have been investigated to solve the unsteady compressible laminar boundary 
layer equations for viscosity effects. However, the solutions have been obtained by approximate 
or series expansion methods because of the characteristics of non-linearity, coupling with the 
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thermal boundary layer equation and initial conditions. For instance, Cohen2 used a co-ordinate 
expansion method to solve expansion wave flow. Hall3 considered the expansion and the 
compression wave with a co-ordinate expansion method. Chang and Chen4 also solved the 
expansion wave using a co-ordinate expansion. 

This paper presents a method to obtain exact numerical solutions, not approximate or series 
expansion. Because the governing equations are partial parabolic differential, temporal and 
spatial initial conditions are required. For oscillatory or transition flows the temporal initial 
condition is supplied from outside the method, e.g. from physical observations or by given 
physical constraints, and the spatial initial conditions is given by variable transformation. 
However, both these initial conditions must be obtained from inside the method by variable 
transformations for an initially developed boundary layer flow. If compatible transformation 
variables are not found, the solutions can only be calculated by approximate or series expansion 
methods. Here the governing equations are simplified for the initial conditions by Howarth and 
semisimilarity variables, which can reduce the number of independent variables from three to two 
and the governing equations from partial to ordinary differential equations at the initial point. 

In general, iterative numerical methods have been widely used for non-linear and coupled 
equations. These iterative methods are very inefficient for the characteristics of stability, conver- 
gence and computer time. In particular, coupled problems with the thermal boundary layer 
equation are more difficult. 

Here the non-linear terms are linearized without sacrifice of numerical accuracy by the 
linearization technique developed by Orlandi and Ferziger' and Kim and Chang.6. 

The transformed equations are written in a system of five first-order partial differential 
equations, and the first-order equations are discretized and linearized by incremental variables 
and the linearization technique. These linearized implicit finite difference equations produce a 
5 x 5 block tridiagonal matrix equation when assembled, which is inverted by a block elimination 
method. Therefore the solutions can be obtained without iterations. 

Results are presented for two wall conditions, i.e. isothermal or adiabatic walls, and compared 
with the solutions of the series expansion method for expansion wave flow. 

GOVERNING EQUATIONS AND TRANSFORMATION 

The unsteady compressible laminar boundary layer flows are considered for an expansion or 
compression wave which travels into a stationary gas with a wavehead velocity of constant sound 
speed. The external flow of the boundary layer is assumed to be one-dimensional unsteady 
isentropic flow, which is well known.' In a co-ordinate system attached to the wavehead the 
dimensionless governing equations are formulated very well in References 3 and 4. 

The equations are transformed by Howarth variables as 

u = u, .=( pu+;+u;). 

Then the governing equations are written as 
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The boundary conditions at the wall (y=O) are given by 

u= 1, u = o ,  T, =const or (aT/ay), = const. 

At the outer edge (y+oo) the inviscid solutions are given by Huter et al.’ as 

2 u,= 1 *-<=F(C) ,  
Y + l  
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(4) 

where the similarity variable is <=x/t and the upper and lower signs are for expansion and 
compression waves respectively. 

The equations are transformed for the initial conditions by using the semisimilarity variables 

r = x l t ,  q=ylx112, I , + = X ~ / ~ U , ~ ,  g=T/T , ,  u=a+/ay,  u= -a+/ax .  (7) 

This transformation reduces the number of independent variables from three ( t ,  x ,  y )  to two (<, q )  
and the governing equations from partial to ordinary differential equations at the initial point. 

The transformed equations are written as 

Here the coefficients m , ,  m,, . . . , m, are functions of < only, as follows 

m, = H ,  1 dF aF t aF 
2 a t  at’ 

m,  = f t2, 

m2 =- F +  r-, m, = -- m“=FX’ 

(10) 
y- lHF2 

m, =-- 
Y G ’  

where the upper sign is for the expansion wave and the lower is for the compression wave. The 
boundary conditions for an isothermal or heat flux wall are 

y = O  f=O, f = l / V , ,  g = l / T ,  or g’=g:; 

Y-m; f -1 ,  g+l .  (1 1) 
The initial conditions are obtained from the reduced governing equations by the substitution 
t =O. 

NUMERICAL FORMULATION 

The order of differential equations is reduced by the introduction of u, u and h, where the symbols 
u and u are reused for the new definition: 

f = u  (12) 
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The boundary conditions are 

q=o; f=O, u= 1/F, g = l / G  or g'=g&; 

Il+w u-+ 1, g+l.  (17) 

Equations (12x16) are solved by advancing the solution in the (-direction. Discretization in 
the (-direction is done by using incremental values A as 

W"" = W"+AW", (18) 

where W represents any variablef, u, v,  h, g or (. 

ization of the derivatives in the 5-direction is done as follows: 
By using a generalized {-differencing formula developed by Orlandi and Ferziger,' discret- 

+ 0 [ (b  -5 -$)A(' +A(']. (19) [ (gy + 4 (F)] = AU" --Au"- 5 
1+r  

Derivatives off and g can also be discretized. 

order-accurate three-point backward implicit scheme is selected by letting 4 = 1 and C = i .  
Among the various schemes identifiable by the two parameters 141 < 1 and 151 < 1, a second- 

Multiplying equation (19) by u and letting 4= 1 and r = i ,  the equation becomes 

This procedure is applied for the (-direction derivatives and central differences are used in the 

The resulting finite difference equations are written as 
q-direction. 

where a, b, c, d, e, S and P are functions of known status. 

when assembled. 
The above system of equations (21x25) can produce a 5 x 5 block tridiagonal matrix equation 
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In accordance with the wall thermal boundary conditions, i.e. the temperature or heat flux 
condition, the five-dimensional vectors Aj and rj are defined differently for each value ofj. For the 
wall temperature condition the vectors are 

For the heat flux condition the vectors are 

a, :I 0 
0 

The coefficient 5 x 5 matrices are composed of the coefficients of equations (21H25). This matrix 
equation is solved without difficulty by using the well-known block elimination 

RESULTS AND DISCUSSION 

The results are presented for isothermal and adiabatic wall conditions with Pr =0.72 and y =  1.4. 
The interesting physical quantities are the skin friction, the heat flux and the displacement 
thickness, which are formulated as 

The skin friction is plotted for isothermal and adiabatic walls in Figure 1. The skin friction for 
the expansion wave increases rapidly behind the wavefront until it approaches a maximum and 
then slowly decreases. The skin friction for the compression wave increases almost linearly with r. 
Because these flows have the characteristics of an initially developed boundary layer, the skin 
friction increases rapidly at the wavefront. After the boundary layer is sufficiently developed, it 
decreases slowly in the decelerated flow and increases linearly in the accelerated flow. Because of 
the viscosity change due to the wall heat flux, the skin friction on the isothermal wall is larger than 
on the adiabatic wall for the expansion wave. However, the opposite phenomenon can be seen in 
the compression wave flow. 

The plot of heat flux is given in Figure 2 for the isothermal wall. The heat flux increases rapidly 
and then decreases slowly as a result of the growing boundary layer thickness in the expansion 
wave flow. The trend of the wall heat flux curve for the compression wave flow is similar to the 
skin friction curve, but the former has a higher slope. 

These results are compared with the series expansion solutions4 given for the expansion wave 
flow. The difference between the two solutions increases gradually with 5 owing to the drawback 
of series solution. In other words, the numerical error of the series solutions is proportional to (” 
but that of the present method is proportional to At’. 
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Figure 1. The skin friction 
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Figure 2. The heat flux 
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Figure 3. The pseudodisplacement thickness 

The pseudodisplacement thickness, where ‘pseudo’ means that the value is formulated in the 
co-ordinate system of Howarth transformation, is plotted in Figure 3. The thickness grows 
rapidly behind the front of the expansion wave but slowly thereafter. In the compression wave it 
grows almost linearly with increasing 5. The curves give an idea of how the thickness grows with 
time at a given point x and how it is distributed in x at a given time. Because of the wall heat flux, 
the displacement thickness in the isothermal wall flow is smaller than in the expansion wave flow. 
The opposite phenomenon can be seen in the compression wave flow. 

CONCLUSIONS 

A numerical method and results are presented for compressible laminar boundary layers excited 
by an expansion or compression wave with constant wall temperature or constant wall heat flux 
condition. 

A semisimilarity transformation and numerical linearization technique are used to deal with 
the difficulties caused by the non-linearity, the coupling and the initial condition. The semi- 
similarity transformation reduces the number of independent variables from three to two and the 
governing equations from partial to ordinary differential equation at the initial point. Therefore 
exact numerical initial conditions can be obtained. Because the numerical linearization technique 
eliminates the non-linear and coupling terms in the governing equations, the solutions can be 
obtained without iterations. 

This technique is much improved compared with series expansion or approximate methods. 
The numerical error of series solutions is proportional to 5” but that of the present method is 
proportional to At2. The results are compared with the series expansion solutions for expansion 
wave flow. 
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APPENDIX: NOMENCLATURE 

coefficient of local skin friction 
inviscid velocity function 
dimensionless streamfunction 
inviscid temperature function 
dimensionless temperature function 
inviscid pressure function 
dimensionless pressure 
Prandtl number ( = 072) 
dimensionless wall heat flux 
gas constant 
Reynolds number 
dimensionless temperature 
temperature in undisturbed region 
dimensionless time 
dimensionless velocity components in (x, y)-co-ordinates 
characteristic velocity (= ,/(yRT,)) 
dimensionless stream co-ordinate system 
ratio of specific heats (= 1.4) 
dimensionless viscosity (proportional to temperature) 
dimensionless density 
dimensionless streamfunction 
displacement thickness 

subscripts 

C characteristic value 
e external value 
W wall value 
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